skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Ya-Feng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. A promising approach to deal with the high hardware cost and energy consumption of massive MIMO transmitters is to use low-resolution digital-to-analog converters (DACs) at each antenna element. This leads to a transmission scheme where the transmitted signals are restricted to a finite set of voltage levels. This paper is concerned with the analysis and optimization of a low-cost quantized precoding strategy, referred to as linear-quantized precoding, for a downlink massive MIMO system under Rayleigh fading. In linear-quantized precoding, the signals are first processed by a linear precoding matrix and subsequently quantized component-wise by the DAC. In this paper, we analyze both the signal-to-interference-plus-noise ratio (SINR) and the symbol error probability (SEP) performances of such linear-quantized precoding schemes in an asymptotic framework where the number of transmit antennas and the number of users grow large with a fixed ratio. Our results provide a rigorous justification for the heuristic arguments based on the Bussgang decomposition that are commonly used in prior works. Based on the asymptotic analysis, we further derive the optimal precoder within a class of linear-quantized precoders that includes several popular precoders as special cases. Our numerical results demonstrate the excellent accuracy of the asymptotic analysis for finite systems and the optimality of the derived precoder. 
    more » « less
  3. This paper focuses on the analysis and optimization of a class of linear one-bit precoding schemes for a downlink massive MIMO system under Rayleigh fading channels. The considered class of linear one-bit precoding is fairly general, including the well-known matched filter (MF) and zero-forcing (ZF) precoding schemes as special cases. Our analysis is based on an asymptotic framework where the numbers of transmit antennas and users in the system grow to infinity with a fixed ratio. We show that, under the asymptotic assumption, the symbol error probability (SEP) of the considered linear one-bit precoding schemes converges to that of a scalar “signal plus independent Gaussian noise” model. This result enables us to provide accurate predictions for the SEP of linear one-bit precoding. Additionally, we also derive the optimal linear one-bit precoding scheme within the considered class based on our analytical results. Simulation results demonstrate the excellent accuracy of the SEP prediction and the optimality of the derived precoder. 
    more » « less
  4. null (Ed.)